IRREDUCIBILITY OF POLYNOMIALS IN THE FIELD OF RATIONAL NUMBERS

Habib Ahmad

Dept. of Math., The University of Lahore, Pakistan.

Irreducibility of the polynomials and their reciprocal polynomials has been a very interesting and difficult discussion in the literature of mathematics in past and is still in present. is the polynomial

 $f(x) = (x - a_1)(x - a_2) \dots (x - a_n) - 1$

irreducible in the realm of rational integers , assuming a_1 , a_2 , a_3 ,..... a_n are distinct integers? This is the objective of this paper .

First of all this question was raised by $\ \ I$. Schur (1) in 1906 . to the question of irreducibility of the polynomials of the form

 $f(x) = ax(x - a_2)(x - a_2)....(x - a_n) \pm c$(2)

and variants there of . In particular Schultz's conditions for the reducibility of the polynomials of the form

 $f(x) = ax(x - a_2)...(x - a_p) \pm p$

(where a is a square and a $_{\rm j}$ are neither congruent to zero nor to each other, are given .

Westlund (2) proved that f(x) is irreducible in the above domain of rational numbers and that

 $g(x) = (x-a_1)(x-a_2)\dots(x-a_n) + 1$

can be reduce only if it is a perfect square in which case n must be even .

The following three theorems are due to Seres (3)

.1) If p(x) is a monic polynomial whose zeroes are distinct, rational integers,

then the polynomial

 $f(x) = (p(x))^{2} + 1$

is irreducible in the field of rational numbers

2) If $\phi(x)$ is the cyclotomic polynomial of order m, and p(x) is a monic polynomial of degree greater than four whose zeros are distinct, rational integers.

Then ϕ_m (p (x)) is irreducible in the field of rational numbers. If the degree of p (x) is less than 5, the same result holds with some exceptions

3) Let p(x) be a monic polynomial with rational, integer coefficients and of degree less than that of $\phi_m(p(x))$. If R(x) = P(x)Q(x), then $\phi_m(R(x))$ is irreducible in the field of rational numbers.

Seres (3) also proved the following theorem :

Theorem . Let $\phi_{m}(x)$ be the cyclotomic polynomial of order m > 2 and n

let $P\left(\,x\,\right)\,=\,\prod\,\left(\,x\,-\,a_{\,k}\,\right)\,$, where the $a_{\,k}$ are distinct , rational integers .

k = 1 n

Then φ_{m} (p (x)) is irreducible over the field of rational numbers .

Also $P(x) = \prod (x - a_k)$ K = 1

Where (k, m) = 1 is irreducible in the cyclotomic field of order m, except when m = 12 and $P(x) = (x - n)^{3} - (x - n)$. I, then, in a different way, proved the irreducibility criteria for variants of the above type of polynomials in my research thesis of Ph.D. THEOREM 1

. Let $f(x) \in Z[x]$ where Z is the ring of rational integers. Assume deg f = n.

Let |f(0)| > 1 while $\{c_1, c_2, \dots, c_r\}$ is the set of all divisors of f(0) of absolute value greater than 1. . Suppose there exist $a_1, a_2, \dots, a_n \in Z$ ($a_i \neq a_i$ for $i \neq j$)

Such that

(a) a_k does not divide $c_j \pm 1$ (k = 1, 2, 3, ..., n; j = 1, 2, ..., r)

(b) $|a_k| > 2$ (k = 1, 2, 3,, n);

(c) $f(a_k) = P_k$ is a rational, prime integer (k = 1, 2,, n).

Then f(x) is irreducible in Q, the field of rational numbers .

PROOF :

Suppose $f(x) = f_1(x)f_2(x)$ Where $f_{1}(x)$, $f_{2}(x) \in Z[x]$, $f_{1}(0) = b$ $_{1}, f_{2}(0) = c_{1}$ **Case 1**. $|b_1| = 1$, $|c_1| = |f(0)| > 1$. Suppose (a), since a_k does not divide $c_1 \pm 1$ $k = (1, 2, 3, \dots, n)$ Suppose $f_1(a_k) = -b_1$ for some k (k = 1, 2,, n) A contradiction of (b) Therefore, $f_1(a_k) = b_1$ (k = 1, 2, ..., n) 3 Implying that $f_1(x) \equiv b_1$ Case II : $|b_1| > 1$, $|c_1| > 1$. Without loss of generality, suppose that $f_{1}\left(\,a_{\,k}\,\right) \,=\, \pm \, p_{\,k} \ \, , \ \, f_{\,2}\left(\,\,a_{\,k}\,\right) \ \, = \ \, \pm \, 1$ For some k $(k = 1, 2, \dots, n)$, a contradiction of (a) THEOREM 2:

Let $\mathbf{f}(\mathbf{x}) \in \mathbb{Z}[\mathbf{x}]$, deg $\mathbf{f} = \mathbf{n}$

Let $f(0) = \pm p$ (p >. 0) where p is a rational prime. Furthermore, suppose there exist

[n/2] + 1 distinct integers a_1 , a_2 ,, $a_{[n/2]}$, such that

a) a_k does not divide $p \pm 1$ (k = 1, 2, ..., [n/2] + 1);

b) $f(a_k) = p$ (k = 1, 2, ..., [n/2] + 1) c) p is odd or n > 3

Then f(x) is irreducible over Q, the field of rational numbers.

PROOF:

Suppose $f(x) = f_1(x) f_2(x)$, where $f_1(x)$, $f_2(x) \in Z[x]$ $f_1(0) = b_1, f_2(0) = c_1$ **Without loss** of generality, we may assume that deg f_1 $\leq [n/2].$ **Case 1**. $|b_1| = 1$, $|c_1| = p$. Suppose $f_1(a_k) = \pm p$, $f_2(a_k) = \pm 1$ For some k (k = 1, 2, ..., [n/2] + 1). Suppose $f_1(a_k) = -b_1$, for some k (k = 1, 2, $\dots [n/2] + 1$). Contradiction of (a), since in this case, a_k would divide 2. Therefore, $f_1(a_k) = b_1 (k = 1, 2, ..., n)$ (2] + 1) This implies that $f_{-1}(x) \equiv b_{-1}$ **Case II:** $|b_1| = p$, $|c_1| = 1$ Suppose $f_{-1} \left(\begin{array}{c} a_k \end{array} \right) \;\; = \; \pm \; 1 \;\; , \;\; f_{-2} \left(\begin{array}{c} a_{-k} \end{array} \right) \;\; = \; \pm \; p$ for some k (k = 1, 2, ..., [n/2] + 1) It is a contradiction of (a) 4 Suppose $f_1(a_k) = b_1, f_2(a_k) = -c_1$ for some k (k = 1, 2, ..., [n/2] + 1) It is a contradiction of (a). Therefore, $f_1(a_k) = b_1$ (k = 1, 2, ..., [n/2]] + 1)Implying that $f_1(x) \equiv b_1$

COROLLARY :

 $C_1 = 0 < c_2 < \ldots < c_{2m}$, each c_j an integer; p a prime .

Furthermore, let $A' = \sqrt{A}$, a 2r - 1 = c 4r - 3, $a_{2r} = c_{4r}$, $b_{2r-1} = c_{4r-2}$.

 $b_{2r}=c_{4r-1}\quad and \ p=A^{\prime}\,b_1\,\ldots\ldots \,b_m\pm 1$. Then the roots of f(x) are real and distinct , and there is precisely one root in each of the following intervals .

[a _j - 1/2	, a _{j+1/2}]	(j = 1, 2,, m)
$[b_j - 1/2,$	b _j + 1/2]	(j = 1, 2,, m)

REFERENCES:

- 1. I. Schur. ' Problem 226 '.Arkiv der Math . und Physik. (3). vol **13**, 367 (1998).
- 2. J.Westlund 'On the irreducibility of certain polynomials ', Amer. Math. Monthly, vol. 16, 66 67(1999)..
 - , Amer. Maur. Monumy, vol. 10, 00 07(199)
- 3. I. Seres . :
- (i) 'Uber dis irreduzibilitat eines Polynomial ', ,Mat . Lapok , Vol. **3**, Pp 1448 – 1450 (1952)
- (ii) 'Ube rein Aufgaba von Schur', Publ. Math. Debracen. vol. $\mathbf{3}$, 138 139(1953)
- (iii) On the irreducibility of certain polynomials ' (Hungarian Jr.) Math . Lapok Vol. 16, 1-7 (1965).
- (iv)' Irreducibility of polynomials ' , (Hungarian , Jr . of Algebra) , vol . 2, 283-286 (1965).