IRREDUCIBILITY OF POLYNOMIALS IN THE FIELD OF RATIONAL NUMBERS

Habib Ahmad
Dept. of Math., The University of Lahore, Pakistan .

Irreducibility of the polynomials and their reciprocal polynomials has been a very interesting and difficult discussion in the literature of mathematics in past and is still in present . is the polynomial
$f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots \ldots \ldots\left(x-a_{n}\right)-1$(1)
irreducible in the realm of rational integers, assuming a_{1} , $\mathrm{a}_{2}, \mathrm{a}_{3}, \ldots \ldots . \mathrm{a}_{\mathrm{n}}$ are distinct integers? This is the objective of this paper.
First of all this question was raised by I. Schur (1) in 1906. to the question of irreducibility of the polynomials of the form
$f(x)=a x\left(x-a_{2}\right)\left(x-a_{2}\right) \ldots \ldots \ldots\left(x-a_{n}\right) \pm c$ (2)
and variants there of . In particular Schultz's conditions for the reducibility of the polynomials of the form
$\mathrm{f}(\mathrm{x})=\mathrm{ax}\left(\mathrm{x}-\mathrm{a}_{2}\right) \ldots \ldots \ldots .\left(\mathrm{x}-\mathrm{a}_{\mathrm{p}}\right) \pm \mathrm{p}$
(where a is a square and a_{j} are neither congruent to zero nor to each other, are given .
Westlund (2) proved that $\mathrm{f}(\mathrm{x})$ is irreducible in the above domain of rational numbers and that
$g(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots \ldots \ldots\left(x-a_{n}\right)+1$
can be reduce only if it is a perfect square in which case n must be even .
The following three theorems are due to Seres (3)
.1) If $\mathrm{p}(\mathrm{x})$ is a monic polynomial whose zeroes are distinct, rational integers,
then the polynomial
$f(x)=(p(x))^{2}+1$
is irreducible in the field of rational numbers
$2)$ If $\phi(x)$ is the cyclotomic polynomial of order m, and $\mathrm{p}(\mathrm{x})$ is a monic polynomial of degree greater than four whose zeros are distinct, rational integers .
Then $\phi_{m}(p(x))$ is irreducible in the field of rational numbers. If the degree of $\mathrm{p}(\mathrm{x})$ is less than 5 , the same result holds with some exceptions
3) Let $\mathrm{p}(\mathrm{x})$ be a monic polynomial with rational, integer coefficients and of degree less than that of $\phi_{m}(p(x))$.
If $R(x)=P(x) Q(x)$, then $\phi_{m}(R(x))$ is irreducible in the field of rational numbers.
Seres (3) also proved the following theorem:
Theorem. Let $\boldsymbol{\phi}_{\mathrm{m}}$ (X) be the cyclotomic polynomial of order $\mathrm{m}>.2$ and \mathbf{n}
let $P(x)=\Pi\left(x-a_{k}\right)$, where the a_{k} are distinct , rational integers .
$\mathrm{k}=1 \mathrm{n}$
Then $\phi_{m}(\mathrm{p}(\mathrm{x}))$ is irreducible over the field of rational numbers.
Also $P(x)=\Pi\left(x-a_{k}\right)$
$\mathrm{K}=1$
Where $(\mathrm{k}, \mathrm{m})=1$ is irreducible in the cyclotomic field of order m, except when $m=12$ and
$P(x)=(x-n)^{3}-(x-n)$.

I, then, in a different way, proved the irreducibility criteria for variants of the above type of polynomials in my research thesis of $\mathbf{P h} . \mathrm{D}$.

THEOREM 1

. Let $f(x) € Z[x]$ where Z is the ring of rational integers. Assume $\operatorname{deg} \mathrm{f}=\mathrm{n}$.
Let $|\mathrm{f}(0)|>1$ while $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \ldots . . \mathrm{c}_{\mathrm{r}}\right\}$ is the set of all divisors of $\mathrm{f}(0)$ of absolute value greater than 1
. Suppose there exist $a_{1}, a_{2}, \ldots \ldots, a_{n} € Z \quad\left(a_{i} \neq\right.$ a_{j} for $i \neq j$)
Such that
(a) a_{k} does not divide $\mathrm{c}_{\mathrm{j}} \pm 1 \quad(\mathrm{k}=1,2,3$, $\ldots \ldots \ldots ., n ; j=1,2, \ldots \ldots ., r$)
(b) $\left|\mathrm{a}_{\mathrm{k}}\right|>.2(\mathrm{k}=1,2,3, \ldots \ldots ., \mathrm{n})$;
(c) $f\left(\mathrm{a}_{\mathrm{k}}\right)=\mathrm{P}_{\mathrm{k}}$ is a rational, prime integer $(\mathrm{k}=1$, $2, \ldots \ldots, n)$.
Then $f(x)$ is irreducible in Q, the field of rational numbers.
PROOF:
Suppose $f(x)=f_{1}(x) f_{2}(x)$
Where $\mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{2}(\mathrm{x}) € \mathrm{Z}[\mathrm{x}], \quad \mathrm{f}_{1}(0)=\mathrm{b}$
${ }_{1}, \mathrm{f}_{2}(0)=\mathrm{c}_{1}$
Case 1. $\left|\mathrm{b}_{1}\right|=1,\left|\mathrm{c}_{1}\right|=|\mathrm{f}(0)|>.1$.
Suppose
$\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)= \pm \mathrm{p}_{\mathrm{k}}, \mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{k}}\right)= \pm 1$
for any $\mathrm{k} \quad(\mathrm{k}=1,2,, \ldots \ldots, \mathrm{n})$. Contradiction of
(a), since a_{k} does not divide $\mathrm{c}_{1} \pm 1$
$\mathrm{k}=(1,2,3, \ldots \ldots, \mathrm{n})$
Suppose $\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)=-\mathrm{b}_{1}$ for some $\mathrm{k} .(\mathrm{k}=1,2$,
........, n)
A contradiction of (b)
Therefore, $\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)=\mathrm{b}_{1} \quad(\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n})$ 3
Implying that $\mathrm{f}_{1}(\mathrm{x}) \equiv \mathrm{b}_{1}$
Case II: $\left|\mathrm{b}_{1}\right|>.1,\left|\mathrm{c}_{1}\right| .>1$.
Without loss of generality, suppose that
$\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)= \pm \mathrm{p}_{\mathrm{k}}, \mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{k}}\right)= \pm 1$
For some $\mathrm{k}(\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{n})$, a contradiction of (a)
THEOREM 2 :
Let $\mathbf{f}(\mathbf{x}) € \mathrm{Z}[\mathrm{x}], \operatorname{deg} \mathrm{f}=\mathrm{n}$
Let $\mathrm{f}(0)= \pm \mathrm{p}(\mathrm{p}>.0)$ where p is a rational prime. Furthermore, suppose there exist
$[\mathbf{n} / \mathbf{2}]+\mathbf{1}$ distinct integers $a_{1}, a_{2}, \ldots \ldots \ldots, a_{[n / 2]}$
+1 such that
a) a_{k} does not divide $\mathrm{p} \pm 1 \quad(\mathrm{k}=1,2, \ldots \ldots,[\mathrm{n} /$

2] + 1) ;
b) $\mathrm{f}\left(\mathrm{a}_{\mathrm{k}}\right)=\mathrm{p}(\mathrm{k}=1,2, \ldots \ldots \ldots .,[\mathrm{n} / 2]+1)$
c) p is odd or $\mathrm{n} .>3$

Then $f(x)$ is irreducible over Q, the field of rational numbers.
PROOF :

Suppose $\mathrm{f}(\mathrm{x})=\mathrm{f}_{1}(\mathrm{x}) \mathrm{f}_{2}(\mathrm{x})$, where $\mathrm{f}_{1}(\mathrm{x})$, COROLLARY:
$\mathrm{f}_{2}(\mathrm{x}) € \mathrm{Z}[\mathrm{x}]$
$\mathbf{f}_{\mathbf{1}}(\mathbf{0})=\mathrm{b}_{1}, \mathrm{f}_{2}(0)=\mathrm{c}_{1}$
Without loss of generality, we may assume that $\operatorname{deg} \mathrm{f}_{1}$ $\leq[n / 2]$.
Case 1. $\left|\mathrm{b}_{1}\right|=1,\left|\mathrm{c}_{1}\right|=\mathrm{p}$.
Suppose $f_{1}\left(a_{k}\right)= \pm p, f_{2}\left(a_{k}\right)= \pm 1$
For some $\mathrm{k} \quad(\mathrm{k}=1,2, \ldots \ldots,[\mathrm{n} / 2]+1)$.
Suppose $\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)=-\mathrm{b}_{1}$, for some $\mathrm{k} \quad(\mathrm{k}=1,2$, $\ldots .[\mathrm{n} / 2]+1$).
Contradiction of (a)., since in this case, a_{k} would divide 2.
Therefore, $\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)=\mathrm{b}_{1}(\mathrm{k}=1,2, \ldots \ldots . .[\mathrm{n}$ /2] + 1)
This implies that $\mathrm{f}_{1}(\mathrm{x}) \equiv \mathrm{b}_{1}$
Case II : $\left|\mathrm{b}_{1}\right|=\mathrm{p},\left|\mathrm{c}_{1}\right|=1$
Suppose
$\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)= \pm 1, \mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{k}}\right)= \pm \mathrm{p}$
for some $\mathrm{k}(\mathrm{k}=1,2, \ldots \ldots ., \quad[\mathrm{n} / 2]+1)$
It is a contradiction of (a)
4
Suppose
$\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)=-\mathrm{b}_{1}, \quad \mathrm{f}_{2}\left(\mathrm{a}_{\mathrm{k}}\right)=-\mathrm{c}_{1}$
for some $\mathrm{k}(\mathrm{k}=1,2, \ldots \ldots . .[\mathrm{n} / 2]+1)$
It is a contradiction of (a).
Therefore, $\mathrm{f}_{1}\left(\mathrm{a}_{\mathrm{k}}\right)=\mathrm{b}_{1} \quad(\mathrm{k}=1,2, \ldots \ldots,[\mathrm{n} / 2$] + 1)
Implying that $\mathrm{f}_{1}(\mathrm{x}) \equiv \mathrm{b}_{1}$

Let $\mathrm{f}(\mathrm{x})=\mathrm{A}\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{c}_{2}\right) \ldots \ldots \ldots\left(\mathrm{x}-\mathrm{c}_{2 \mathrm{~m}}\right) \pm \mathrm{p}$; $m \geq 4$ and A, a positive, square integer;
$\mathrm{C}_{1}=0<\mathrm{c}_{2}<\ldots \ldots .<\mathrm{c}_{2 \mathrm{~m}}$, each c_{j} an integer; pa prime.
Furthermore, let $A^{\prime}=\sqrt{ } A, \quad$ a $2 r-1=c 4 r-3$, $\mathrm{a}_{2 \mathrm{r}}=\mathrm{c}_{4 \mathrm{r}}, \quad, \quad \mathrm{b}_{2 \mathrm{r}-1}=\mathrm{c}_{4 \mathrm{r}-2}$,
$b_{2 r}=c_{4 r-1}$ and $p=A^{\prime} b_{1} \ldots \ldots . . b_{m} \pm 1$. Then the roots of $f(x)$ are real and distinct, and there is precisely one root in each of the following intervals.
$\left[a_{j}-1 / 2, a_{j+1 / 2}\right]$
($\mathrm{j}=1,2, \ldots ., \mathrm{m})$
$\left[b_{j}-1 / 2, b_{j}+1 / 2\right]$
$(\mathrm{j}=1,2, \ldots . \mathrm{m})$

REFERENCES :

1. I. Schur. ' Problem 226 '.Arkiv der Math . und Physik. (3). vol 13, 367 (1998).

2 . J.Westlund ' On the irreducibility of certain polynomials - , Amer. Math. Monthly, vol. 16, 66 - 67(1999)..
3. I. Seres.:
(i) 'Uber dis irreduzibilitat eines Polynomial' ,Mat . Lapok, Vol. 3, Pp 1448-1450 (1952)
(ii) ' Ube rein Aufgaba von Schur ' , Publ . Math . Debracen. vol. 3, 138-139(1953)
(iii) On the irreducibility of certain polynomials ' (Hungarian Jr.) Math . LapokVol. 16, 1-7 (1965).
(iv) ${ }^{\text {‘ Irreducibility of polynomials ‘, (Hungarian , Jr . of }}$ Algebra), vol . 2, 283 - 286 (1965).

